24 Analytical solution to the diffusion reaction equation
General form of the transport equation
The general form of the radionuclide transport equation is:
[latex]\frac{\partial}{\partial t}(\epsilon K N)+ \nabla (\epsilon v N) - \nabla^2 (\epsilon D N)+\epsilon K \lambda N =0.[/latex]
Simplifying assumptions
Assuming v = 0, we have the time-dependent diffusion reaction equation.
The transport equation reduces to:
[latex]\epsilon K \frac{\partial N}{\partial t}-\epsilon D \frac{\partial^2 N}{\partial x^2}+\epsilon K \lambda N=0.[/latex]
For a semi-infinite medium, the following side conditions are applied:
[latex]\displaylines{ N(x,0)=0,~~ 0 \lt x \lt \infty, \\ N(0,t)=N^*,~~ t \gt \infty, \\ N(\infty,t)=0,~~ t \gt \infty. }[/latex]
General procedure
- Apply the Laplace transformation as before.
- Obtain the general solution in the Laplace space.
- Apply the side conditions to the general solution in the Laplace space.
- Use the ‘sigma transformation’:
[latex]\frac{\sqrt{\pi}}{2}e^{-2\sigma}=\int_{0}^{\infty}e^{-\xi^2-\frac{\sigma^2}{\xi^2}}d\xi[/latex] - Rearrange the integral similar to the general transport equation to obtain the solution in the real space, N(x,t).
- Apply the exponential/error function transformation:
[latex]\int e^{-a^2\xi^2-\frac{b^2}{\xi^2}}d\xi=\frac{\sqrt{\pi}}{4a}[e^{2ab}erf(a\xi+\frac{b}{\xi})+e^{-2ab}erf(a\xi-\frac{b}{\xi})][/latex] - Evaluate the expression using the limits of integration, rearrange, and apply the erfc.
The final solution is:
[latex]N(x,t)=\frac{N^*}{2}[e^{x\sqrt{\frac{K\lambda}{D}}}erfc(x\sqrt{\frac{K}{4Dt}}+2\sqrt{\lambda t}+e^{-x\sqrt{\frac{K\lambda}{D}}}erfc(x\sqrt{\frac{K}{4Dt}}-2\sqrt{\lambda t})][/latex]